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Abstract. Neutron diffraction with polarization analysis was performed on a single crystal
of CuO, criented with its &* and c* axes in the diffraction plane. It was verified that in
the commensurate phase | (02127 K; k = (%,{), —%)), the magnetic moments were
indeed along &*, but it was found that in the incommensurate phase 1T (212.7-232.5 K;
k = (0.506,0, —0.483)) there also exists a component of the magnetic moment along
b* in disagreement with an earlier study by Forsyth & af.

Our data are in agreement with the very recent results of Brown ¢ al. We propose a
helimagnetic arrangement in the incommensurate phase II, with the magnetic moments
rotating in the plane (b*;0.506a* + 1.517¢*). We present here a short account of
our experimental resuits, a study of the stability of the magnetic structure in phase Ii
and the symmetry analysis of the possible magnetic space groups.

1, Introduction

The interplay between superconductivity and magnetism in HTSC copper oxides has
encouraged investigations on magnetic materials containing Cu—O-Cu bonds. A vari-
ety of these bonds are realized in the apparently simple cupric oxide CuO (tenorite),
belonging to the monoclinic space group C2/e (No 15). To our knowledge, Forsyth
et al (1988), Ain ef al (1989) and Yang ef al (1988, 1989) have previously studied the
structure or the dynamics of the spin system in this compound.

The crystalline structure of CuO has been refined by Asbrink and Norrby (1970)
from x-ray data, and some of their results are summarized in table 1 and in figure 1.

CuO is an insulating material; its unit cell is shown in figure 1. It contains four
Cu-O groups. Each copper ion is located on a centre of symmetry and is nearly
rectangularly coordinated by four oxygen ions, forming a CuQO, plate. The non-
primitive translation of the space group C = [{,1,0] connects the copper ions so as
to form ribbons of side-sharing CuQ, plates, stretching along [110]. Conversely each
oxygen ion is enclosed in a tetrahedron of copper ions; it is located on a twofold
axis, hence generating ribbons along [110]. As a consequence, we have two copper
sites labelled Cu; and Cu;; (one on each set of ribbons) that are connected via the
symmetry axis.

Inside the copper tetrahedron, there are six Cu—O—Cu angles, of which only four
are different owing to the presence of the twofold axis. It is accepted since the
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Figare 1. Perspective view showing four cells of
CuQ). The spheres are oxygen ions, and the ellip-
soids are copper jons; the lons are fatier from front
to back. One can recognize ribbons of CuQ, ad-
jacent plates along {110} and {{10]. The numbers
in parentheses distinguish the different copper ions
cited in table 1 and in the text.

Table 1. Crystallographic information on CuQ from Asbrink and Norrby (1970):
(room temperature)

(i} CuO; space group, C2/e (No 15).

(i) a=4.6837T+5 A, b=34226+5 A, ¢=5.1268+6 A and § =99.54 £ 1°,
(i) Cu on 4(c) [}, §, 0% (VFIE, 3,05 (UL 5 5L (1§ 1) (4))

(iv) Oon 4(e): {0, %, )DL GG, 2+, 20 ()} [0, 21 (3B [(4, 3w, 3):(4))
(with y = 0.4184 % 13)

Bond Cu(2-0-Cu(3) Cu(l}-O-Cu(d) Cu@FO-Cu(d) Cu(2-O0-Cu(5)
Angle 145.82¢ 108.85° 104.03° 95.72¢
Exchange Ji3 Ji A J2

work of Anderson (1950) that the strength of the superexchange coupling displays
directional properties, with a maximum for a direct coupling through the O?~. This
indicates that in our case the Cu(2)-O-Cu(3) coupling, even if not equal to 180° (see
figure 1 and table 1), may be more powerful than the three others.

An antiferromagnetic phase transition in CuO was first briefly reported by Brock-
house (1954) after a powder neutron diffraction experiment. Much later Forsyth
et al (1988) published a single-crystal neutron diffraction study summarized in ta-
ble 2. It appeared then that an incommensurate antiferromagnetic structure forms
below 232.5 K (phase II), creating in the vicinity of each allowed nuclear peak two
first-order satellites defined by the propagation vector k = 0.506a* — 0.483¢* no
higher-order satellites have been observed yet The positions of the satellites were
reported to remain constant in temperature down to the magnetic phase transition
at 212.7 K Below this latter temperature, the structure is commensurate antiferro-
magnetic with a propagation vector £ = 0.5a* — 0.5¢* (phase I). It is constituted of
pairs of ferromagnetic sheets, parallel to the plane (b,a + c).

When analysing the dynamic magnetic properties of CeO (unpublished work) it
appeared that the magnetic couplings in this compound were indeed of the particular
type that produce helimagnetism, i.e. strong antiferromagnetic interactions along next-



Magnetic structure of CuQ by neutron diffraction 5329

Table 2. Magnetic structure of CuQ in both phases, as proposed by several workers.

Phase () commensurate  (i[) incommensurate
Temperature 0—=212.7TK 212.7 =~ 232.5 K
Propagation vector k= (3,0,-1) k= (0.506,0, —0.483)

Data of Forsyth er al (1988)

Magnetic moments  Collinear to b* In plane (a*,c*}
Structure [REY] Helical
Envelope Square wave Elliptical

Data of Brown et af (1991)

Magnetic moments  Collinear to b* In a plane /b*, making* an angle of
28.2(R)” with [001]

Structure 1111 Helical

Envelope Square wave nearly circular; ellipticity of 1.03
Present work

Magnetic moments  Collinear to b* In plane* (b, 0.506a” 4 1.517¢*)

Structure 1Ll Helical

Envelope Square wave Nearly circular; ellipticity of 1+0.05

* Plane (b*, 0.506a* -+ 1.517¢*) makes an angle of 28.31° with [001], which is to be
compared with the angle of 28.2(8)* found by Brown e af (1991).

nearest-neighbours (NNN) bonds Cu(2)-O-Cu(3) (see figure 1 and table 1), hence

defining the general direction in which the helical structure will tend to propagate.
The patural pitch angle of this incommensurate structure is given by 8;; = 27k -
where »,; is the vector connecting two copper nearest neighbours (NN) z and j.

Fgf couples [(2) M [2x@®)], [Gx(1)] and [(3);(4)], we have
0,, = 83, = 86.94° 05, = 6y, =91,08°,

It is intuitively understandable that, when the NN coupling of the helimagnetic struc-
ture is strong, the pitch angle will approach 0° or 180° depending on whether this
coupling is ferromagnetic or antiferromagnetic. Conversely, if this same coupling
loosens, the pitch angle is expected to approach 90°. Therefore, the above values for
8,; supgest that the NN exchange couplings are much weaker than the NNN coupling.

It is also clear from the low-temperature collinear arrangement of phase I that
b is the easy axis; it corresponds to a magnetic anisotropy responsible for the gap
of nearly 0.2 THz (neatly 9 X) in the dispersion curves of magnons, as measured
by Ain et al (1989) at T = 30 K Let us emphasize that direction & is a resulting
compromise between the two sets of local anisotropy directions, each attached to one
set of ribbons. The dipolar anisotropy is very small and will not be considered. This
is all the more justified here, as copper has a very small magnetic moment and as all
temperatures under consideration are high.

At the incommensurate-commensurate transition, the crystalline anisotropy con-
veniently aligns all the magnetic moments. The directions of the magnetic moments
on NNN couples Cu(2) and Cu(3) are slightly reoriented from 178° to 180°, unlike
the moments on NN couples that are subjected to a drastic reorientation from a
0,4 {Or 8,,) of 91.06° (or 86.94°), to 0°, showing unambiguously that the NN super-
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exchange couplings are weak in CuO. These views were expressed at the ‘Réunion
IRF—Supraconducteurs 2 Hautes T’ held in Grenoble on 15-16 June 1989.

2. Experiment

A polarized neutron experiment was performed on the G6.1 spectrometer at the
Orphée reactor of the Laboratoire Léon Brillouin at Saclay to verify some aspects of
the magnetic structure of CuO., The wavelength X = 4.7174 A was obtained from
a vertically bent graphite monochromator and the incident beam was filtered for the
A/2 by a block of cooled beryllium. The polarizer and analyser were two Co-Ti
benders of Institut Laue-Langevin type. Polarized neutrons were guided by a vertical
magnetic field of 20 Oe from the polarizer to the analyser, and through the sample
as well. When needed, the spins of the diffracted neutrons were reversed by a flipper
coil at the entry of the analyser, with a flip ratio of 70 to 1. Tt is recalled that
the neutron only ‘sees’ the component S, of the magnetic moment projected on a
plane perpendicular to the diffraction vector ¢. This component, in turn, has to be
decomposed into two parts: one parallel to the spin of the neutron and the other
perpendicular to it, these latter two components being responsible, respectively, for
the non-spin-flip and spin-flip diffraction of the neutron.

The CuO single crystal of 12 mm x 3 mm x 4 mm dimensions was grown
by Wanklyn and Garrard (1983) at the Clarendon Laboratory by flux growth in a
platinum crucible. The starting materials for the fiux were MoOj;, V,0, and K,CO;.
Its largest dimension was approximately along a* 4+ c*.

The crystal was oriented with its a* and c* axes in the diffraction (horizon-
tal) plane and hence with »* parallel to the vertical polarization of the neutrons.
Therefore, only (h,0,[) Bragg peaks were accessible. In the following we shall be
concerned with (1,0, 1) and (,0, 3) reflections, which form an angle of 104.8° in
reciprocal space. In the incommensurate region these two peaks shift a little and can
be indexed as (0.506, 0, —-0.483) and (0.506, 0, 1.517).

The experiment consisted in stabilizing the temperature at selected values in both
commensurate and incommensurate regions, pointing successively to the two selected
Bragg peaks, and performing rotations of the detector (or 8 scan) once with the fipper
on and a second time with the flipper off. Table 2 summarizes our observations and
those of Brown e al (1991), and figure 2 demonstrates this. The peaks in figures 2(a)
and 2(b) were obtained in the commensurate phase at 14.87 K; they show that along
two nearly perpendicular directions there is no spin-flip signal, and hence that in
phase T all the moments were aligned along b (or ). The peaks in figures 2(c)
and 2(d) were obtained in the incommensurate phase II at 221 K. Figure 2(c) shows
that the spin-fiip and non-spin-flip intensities are similar, indicating that the two
components of S, already defined, that are seen in the 0.506a* — 0.483¢" direction,
are nearly equal. Figure 2(d) reveals finally that, in phase II, the peak (0.506, O,
1.517) is entirely non-spin-flip, proving firstly that the only moment that the neutron
‘sees’ is paralle] to its polarization, confirming that there is indeed a component of
the magnetic moment along b (or b*) as expected, and secondly that the helix is,
to a good approximation, in plane (b*; 0.506e* + 1.517¢*), for the reason that the
‘invisible’ component of the magnetic moment has to be along the diffraction vector
q.

Least-squares refinement of the data shows that the plane of the helix is paraliel
to & (or &), and that it makes an angle of 106.9 £+ 1* with the propagation vector
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Figure 2. The CuO peaks at A = 4.717 A. « the spin-flip and O: the non-spin-flip
intensities.

k = 0.506a* — 0.483c* and 28.19 + 1° with [001] in S obtuse. It is very close to
plane (b*; 0.506a* + 1.517¢") that makes an angle of 106.78° with the propagation
vector and 28.31 4 1° with [001] in 8 obtuse. These values are in agreement with
the result of Brown et al (1991) who have measured an angle of 28.2(8)° between
the plane of the helix and [001) in 3 obtuse, which gives an angle of 106.89(8)° with
the propagation vector. It has also been deduced from the data that the envelope of
the helix is circular within an error of 5%, this result being in agreement with the
work of Brown ef a/ (1991). In section 3.1 we shall show that the occurrence of the
propagation vector in plane (a*, ¢*) imposes a circular envelope.

Although the crystal was not twinned and revealed a very fine mosaic during
triple-axis measurements we should note that the peaks in figure 2 have an irregular
shape. This feature will not be discussed here; we simply wish to mention that it
has also been observed for nuclear peaks at room temperature in the high-resolution
X-ray measurements by Langford and Louér (1991) and is attributed to a distribution
in the dimensions of the unit cell and hence to the Cu-O bond lengths. This feature
could very well be reflected by a distribution of the superexchange couplings between
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copper ions producing the irregular shape of the peaks in phase II.

To compare our measurements with those of Forsyth et al (1988) we calculated,
at T = 15 K, the integrated intensity of each of the two peaks (%,0, §) and (3,0, 3}
the ratic of the corresponding structure factors was found to be

Fi/Fy = /(L 5in 8,)/(L5in ;) = 1.4

where the indices 1 = (2, ,3) and 2 = (1,0,2), with 6; being the corresponding
Bragg angle. This result is within 5% of the correspondmg ratio obtained from the
data in table 2 of Forsyth e al (1988).

3. Analysis

Classical theories have been of great help to gain insight into a magnetic structure
where an intuitive guess of the arrangements of the magnetic moments is impossible.
In section 3.1, the analysis is inspired by the work of Bertaut (1974), Villain (1959)
and Yoshimori (1959) (see also Rossat-Mignot (1987) for a review and Regnault and
Rossat-Mignot (1990)). Section 3.2 is an application to CuQ, of the symmetry analysjs
of magnetic structures by Bertaut (1968, 1971, 1981).

3.1. Minimizing the Hamiltonian

Every copper ion is coordinated to four oxygen ioms, each in turn being coordinated
to three other copper ions. However, the total number of neighbours to a particular
copper ion is not 12, as expected, but only ten, for the simple reason that successive
copper ions on a chain are connected by two different oxygen ions, as is clearly visible
in figure 1 (for example: Cu(2) and Cu(5)). The neighbourhood pointers labelled 4§,
to §; are defined in table 3; they are vectors connecting one particular copper ion
with the neighbours with which it has a superexchange coupling via an oxygen ion.
The first four are common to sites Cu; and Cuy;, while §; and §; are specific and
distinctive for sites Cu; and Cuy;, respectively.

Table 3. Row I label of neighbourhood pointers; row 2: their definition; row 3 the
sites connected; row 4: the corresponding exchange coupling,

Row !l & &2 &3 N 8y &g
Row2 (a4¢)f2 (c+8)/2 (e-b)/2 (a-€)/2 (B+a)f2 (b-a)/?
Row 3 Cu-Cu;p  Cu~Cuyp  Co-Cupp  Cu-Cuyp  Cur-Cuy QupCuy
Row 4 J4 Jj J1 Js Jz J2

We shall proceed with the minimization of the Hamiltonian to the point necessary
to the needs of understanding the static magnetic structure, postponing a more com-
plete development to a forthcoming paper on spin waves in CuO. As a preliminary,
we have 10 select the interactions that will be included in the Hamiltonian. The
anisotropy term will be absent in the expression for the Hamiltonian, because the
experimental results do not display its signature. Anisotropy produce a distortion of
the regulat arrangement of the helix, and one would expect to observe high-order
satellites among the magnetic diffraction peaks (Coqblin 1977, Jensen and Mackin-
tosh 1991), which has not been the case to date. Hence the remainder of this section



Magnetic structure of CuQO by neuwron diffraction 5333

applies to the incommensurate phase where an anisotropy term is irrelevant. It is
merely responsible for the orientation of the plane of the helix.
Summing separately over all sites Cy; and Cuy;, the Hamiltonian reads

H=3 > 3 J)8(r)-S(ri+8,)+% > 3 J(5,)8(r;)-S(r; +8,)

i€Cuy p fECu v

1)

where §, and §, belong to the set {+5, ...+ §}.

When a magnetic structure generates two first-order satellites +k around each
nuclear peak, it implies that the Fourier transform of the spin operator on site =
reduces to

8(r,) = S;(k)exp(i2nk -+ r;) + 8;{~k) exp(~i27k . r;) for sites Cu;  (2a)
5(r;) = Sy (k) exp(i27k - r;} + Sy(—k) exp(~i2wk - r;) for sites Cuy; (2b)

with Sy(k) = §;(—k}* and Sy (k) = Sy {—%)". In order to check that the amplitudes
_of moments on equivalent sites are equal, we have to write that

|8(r;)|? = S;(k)2exp(idnk - r;) + Si(k)Y exp(—idwk - v;) + 28,(k) - Si(—k)
=57 for Cu; : (3a)

|s(1-j)i'*’. = SII(k)2 exp(idwk - "‘j) + S“(k)2exp(—i41rk ’ ""'j) + 25y (k) Spl~k)
= 5§ for Cuy (3b)

where spins on inequivalent sites are not supposed equal, i.e. S is not necessarily
equal to S;;. We can easily see that, if k& is incommensurate, equations (3) can be
satisfied only if the factors of the exponentials are zero. This is verified if S;(k) and
S (k) are two vectors proportional to (u—iv), v and v being two unitary orthogonal
vectors. One then has S;(k)? == 0 and S;(k)? = 0, hence cancellmg the terms with
exponentials.

Replacing equations (2) in the Hamiitonian (1) gives

H = N{¢[S1(k) - Sy(=Fk) + S1(—k) - Su(k)] + (2 51(k) - Si(—k)

+ (aSu(k) - Su(-k)} @
where N is the pumber of copper ions on each site and
¢, = J,cos(2nk - 8,) + J,[cos(27k - 6,) + cos(2mk - 65)] + J; cos(2wk - 6,) (Sa)
o = Jycos(2mk - 65) (5b)
Ca = Jycos(2mk - 65). (5¢)

The minimization of the Hamiltonian (4) relatively to S;(k) and 5,;(k) is subjected
to the constraint relations (3). Without loss of generality we can begin with a weaker
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condition, ensuring solely that the sum of all the squared amplitudes of the magnetic
moments on both sites be fixed. This is obtained by adding equations (32) and (3b):

T Si(k)- Sy-k) + 3 Su(k)- Sy(—k) = N(S? + 57) = constant.  (6)
i€Cuy JECun

Now applying the Lagrange multiplier technique to minimize equation (4) submitted
to the constraint (6) leads to the equations

¢, Su(k) + (25, (k) = AS;(k) (7a)
(S (k) + ¢, S1(k) = ASy(k) (7b)

where A is the Lagrange multiplier. Equations (7) admit non-trivial solutions only if

A=3 {(C2 + (3} £ [((y — ¢a)? +4C;2}”2}

in which case the amplitudes of the magnetic moments on sites Cu; and Cuy; are
related by

Sy(k) = [(A - Cz)/C1]Si(k) = [Cl/('\ - Cs)]S'[(k) = Fst(k)-

Thus we reach an important result for CuQ, namely, if I' = 1, that is to say if we have
equal moments on sites Cy; and Cuy, then we must have {, = {; or equivalently
from (5b) and (Sc)

cos(2nk - 6;) = cos(2mk: 6g). | (6]

Conversely examination of condition (8) shows that, if the propagation vector k
is confined to plane (b, a x b) or to plane (a,c) where it actually lies, then we can
conclude that the amplitude of the magnetic moments on sites Cu; and Cuy; are
equal. As a corollary this imposes a circular envelope to the helical structure. The
occurrence of k in either plane depending on the particular values of the (J;...J,).

3.2. Symmetry arguments

With the knowledge of the propagation vector k = (ic k,,k,) for the magnetic
structure and the direction of the magnetic moments in CuO, we can derive the
different magnetic configurations compatible with the magnetic space group G, of
CuO; this is readily obtained from a symmetry analysis of the magnetic representations
(Bertaut 1968, 1971, 1981).

The underlying point group of C2/c is C'2h(2/m) = {1,2,,1,m}. The propa-
gation vector k of the magnetic phase of CuQ is invariant under the plide plane
¢ = {m,|0,0,3}, but not under the twofold axis 2,, hence reducing the point
group to Cy (m) = {1, m}, and the magnetic space group Gy to Cc No 9). We
can choose as generators of space group Cec the three primitive translations, plus
C={ 1|2, £,0}, a non-primitive translation, and ¢, Therefore we have the coset
expansion

G,=1T+CT+ T+ (Cc)T
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where T is the invariant subgroup of the primitive translations. In the following we
shail choose the reference copper ions at:

(3300 [(§,5,0,C@]  [(5HHDC®]  [(§15),C@)]
in preference to those in table 1. The transformation matrices for the y component

of the Fourier transform of the magnetic moment are deduced from the following
relations:

Cst, = 53, Csk, =e28%,  (1,1,0) (%)
CSi, = Siy Csk =a2Sk,  (1,1,0) (%)
cS}, = S§, | cS§, = Sk, (0,1,0) (%)

¢S5, = b5}, (0,0,1) cS§, =255, (0,1,1)  (5d)

where in parentheses we have written the primitive translation involved in the trans-

' formation, and where a® = exp(i2nk,) and b® = exp(i2nk,). When dealing with

a component parallel to the glide plane (called the in-plane component), one will

simply have to reverse the signs of all the right-hand sides in equations (S¢) and (9).
In matrix form equations (9) read

0 0 1 0 ¢ 0 1 0
c=|0 0 01 e |0 0 01
“ler 0 0 O 15 0 0 0

0 2 0 0 0 % 0 0

These generators satisfy the defining relations that follow:

0 0 06 1
2 _ .2 2 L2 — _ ] 0 (.12 0
C° ="l ¢’ = bl cC=Ce= 0 20 0
e?b? 0 0 0

where 1 is the identity operator. These matrices constitute a representation I' of the
problem in hand, Table 4 gives the character table of the irreducible representations
of G, = Ce, note that they are one-dimensional,

Table 4. Character table of the irreducible representations of Gy.

1 C C ¢

I I ab a b
' 1 ab —-a -b
Ty 1 -ab a =0
Ty 1 -ab -a &
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By application of the projection operator we shall obtain the basis vector of each
representation I',.

h
Vi =3 d,(hynvF

where d,(h) is the unique matrix element associated with operator h in any of
the representations I',-T',, and V¥ is a linear combination of the Sf,. Choosing

Vk = 5f , one finds that
V¥ = 8f, + a*b" 8§, — a* S5, - 0 5%,
Vi = SE o+ a'v'SE, + a* S5, + b S,
Vi = 8f, —a*b" S5, —a” Sk, + b* 5%,
V) =8f —a'b" S, + 0" S5, —b*SE,.

Only one vector at a time can contribute to each component of the magnetic moment
(Bertaut 1981). Choosing Vi* # 0 and V}* = V¥ = V}* = 0 for example, we obtain

sk, = v sk, = -laV{ sk, = -1bVf 5%, = LabV.
Let us write Vi* = 25 exp(i27 ), where ¢ is an adjustable parameter. Then, in the

representation I';, we can express the magnetic moment on each copper ion inside
cell ¢ as (see relations (I-4)—(1-6) of Bertaut {1571))

S;'y = Sycos(27k - r; + )
,S';y = ~S,cos[2m(k r; + k,./2) + ¢]

S, = —Sycos[2n(k-7; + k,/2) + ]

Siy = Spcos{2n[k-7; + (k, + k,) /2] + &} (10)
In the commensurate phase I, we have
kf:% kz:-—-% a:i b:___i‘

Furthermore the parameter ¢ has to be set to = /4, in order that all moments on
sites Cu; and Cuy; have equal amplitude as desirable from section 3.1 (condition (8));
then the arrangement is such as {1l{, Cu(l) and Cu(4) being parallel, and Cu(2}
and Cu(3) antiparallel. We can verify that selecting V¥ % 0 rather than V/* gives
the same configuration. If V¥ (or V}}) # 0 then Cu(l) and Cu(4) are antiparallel,
and Cu(2) and Cu(3) are parallel, but this configuration is totally unacceptable, with
respect t0 the measured intensities of the magnetic Bragg peaks.

In the incommensurate phase II, we have, for the y component, the same relations
(10) pertaining to representation I'y, and for the in-plane component with the same
representation we have

Sfp = Sycos(2nk-r; + Pp)

S, = —Spcos2n(k v, + k,/2) +6p]

Si, = Speos[2m(k 7 +k,/2) + 0]

Sip = —Spcos{2nlk v, + (ky + k,) /2] + ©,} (1

with ¢ = 0 in (10) and ¥, = w/2 in (11) to satisfy condition (8). Here again equa-
tions (10) and (11) describe the observed helical structure with a circular envelope.



Magnetic structure of CuQO by neutron diffraction 5337

4. Conclusion

It is not a common practice to use neutron polarization analysis to study magnetic
structure, and yet we have proved that it can be a decisive technique. There is
agreement between us and Brown et a/ (1991) who have used a more sophisticated
technique. We both find the same propagation vector k = (0.506,0,—0.483) for
the helical structure of the incommensurate phase. The plane of the helix is parallel
to b* (or b) and makes an angle of 106.9 3 1° with the propagation vector and
28.19 £ 1° with f001] in 3 obtuse, to be compared with the value of 28.2(8)° found
by Brown et al (1991). Finally, we both found a nearly circular envelope for the helix.

In the theoretical part of the paper we neglect the anisotropy term in the Hamil-
tonian describing the incommensurate phase of CuO. This is justified by the absence
of high-order satellites. We show then that in the minimization process of the Hamil-
tonian a constraint appears, which imposes the condition that the envelope of the
kelix should be circular if the propagation vector is found in plane (b,a x b) or in
plane (a,c) where it actually lies.
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