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I. PhF: Condens. Matter 4 (1992) S327-5338. Printed in the UK 

Magnetic structure of CuO by neutron diffraction with 
polarization analysis 
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t Clarendon Laboratory, Parks Road, Oxford 0x1 3PU, UK 
§ labomtoire de CrisWlographie (CNRS), 166X, 38042 Grenoble a d e x ,  France 
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Abstract. Neutron ditIraclion with polarization anaeiis was performed on a single aystal 
of 010. d e n t e d  with its a' and C* axes in the diErdnion plane. It was verified that in 
the mmmensurale phase I (CL2127 K; k = ($,a,-$)), the magnetic moments were 
indeed along b', bul il was found that m the incommensurate phase I1 (212.7-2325 K; 
k = (0 .506 ,0 , -0 ,483) )  there also edsts a mmponent of the magnetic mment  along 
b. in disagreement with an earlier study ty Forsyth U al. 
Our data are in agreement with the vely m n t  results of Bmwn d al. W pmpose a 

helimagnetic arrangement in the incommensurate phase 11, with the magnelic moments 
rotating in the plane (b*;0.5060* + 1.517c*). We present here a short account of 
our crprimenral mulu, a study of the stzbility of the magnetic structure in phase 11 
and the symmetry analysis of the p i b l e  magnelic space p u p s  

1. Introduction 

The interplay between superconductivity and magnetism in HTSC copper oxides has 
encouraged investigations on magnetic materials containing Cu-O-Cu bonds. A vari- 
ety of these bonds are realized in the apparently simple cupric oxide CuO (tenorite), 
belonging to the monoclinic space group C 2 / c  (No 15). 'lb our knowledge, mrsyth 
er al (1988), Ain et a1 (1989) and Yang et a1 (1988, 1989) have previously studied the 
structure or the dynamics of the spin system in this compound. 

The crystalline structure of CuO has been refined by &brink and Norrby (1970) 
from x-ray data, and some of their results are summarized in table 1 and in figure 1. 

CuO is an insulating material; its unit cell is shown in figure 1. It contains four 
Cu-0 groups. Each copper ion is located on a centre of symmetry and is nearly 
rectangularly coordinated by four oxygen ions, forming a CuO, plate. The non- 
primitive translation of the space group C = [$, + , O ]  connects the copper ions so as 
to form ribbons of side-sharing CuO, plates, stretching along [llO]. Conversely each 
oxygen ion is enclosed in a tetrahedron of copper ions; it is located on a twofold 
axis, hence generating ribbons along [liO]. As a consequence, we have two copper 
sites labelled Cu, and Cull (one on each set of ribbons) that are connected via the 
symmetry axis. 

Inside the copper tetrahedron, there are six Cu-O-Cu angles, of which only four 
are different owing to the presence of the twofold axis. It is accepted since the 
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0 8 
oxygen copper 

ngum L Perspeaive view s h d n g  four cells of 
CuO. Ihe spheres are Dxygen ions, and lhe ellip 
soids are mpper ions; the ions a= faller from Gun1 
to back. One can m o g n i u  ribbons of 0.10, ad- 
jacent plates along [llOl and (ito]. Ihc numbers 
in parenlheses distinguish lhe dilferenl mpper ions 
cited in table 1 and in the text. 

work of Anderson (1950) that the strength of the superexchange coupling displays 
directional properties, with a maximum for a direct coupling through the 02-. This 
indicates that in our case the Cu(Z)-O-Cu(3) coupling, even if not equal to 180° (see 
figure 1 and table I), may be more powerful than the three others. 

An antiferromagnetic phase transition in G O  was first briefly reported by Brock- 
house (1954) after a powder neutron diffraction experiment Much later Forsyth 
el al (1988) published a singlecrystal neutron diffraction study summarized in ta- 
ble 2 It appeared then that an incommensurate antiferromagnetic structure forms 
below 2325 K (phase 11), creating in the vicinity of each allowed nuclear peak two 
fust-order satellites defmed hy the propagation vector k = 0.506~. - 0 . 4 8 3 ~ ~  no 
higherader satellites have been observed yet. The positions of the satellites were 
reported to remain constant in temperature down to the magnetic phase transition 
at 2127 K Below this latter temperature, the structure is mmmensurate antiferro- 
magnetic with a propagation vector k = 0.5~' - 0.5~' (phase I). It is constituted of 
pairs of ferromagnetic sheets, parallel to the plane (b,  a + c). 

When analysing the dynamic magnetic properties of CuO (unpublished work) it 
appeared that the magnetic couplings in this compound were indeed of the particular 
type that produce helimagnetism, i.e. strong antiferromagnetic interactions along next- 
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lhbk Z Magnetic structure of Cl10 in both phases, as proposed by several workers 

Phase (l) "mensumte ( I t )  incommensurate 
EUlperat"re 0 - 212.7 K 212.7 - 232.5 K 
Ropagation vector k =  ( $ , O , - $ )  k = (0.506,0,-0.483) 
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Data of Forsyth n d (1988) 

Magnetic momenls Collinear to b' In plane (a*, c') 
SLrUClUre 1111 Helical 
Envelope Square wave Elliptical 

Data of Brown ef II[ (1991) 

Magnetic momenls Collinear to b* 

SIN C L U E  l t l l  Helical 
Envelope Square wave nearly circular. ellipticity of 1.03 

In a plane lib*, making' an angle of 
28.2(8)' with [Oal] 

Present work 

Magnetic momenls Collinear to b' 
SINClUE t t l l  Helical 
Envelope Square wave Nearly circular. elliptidty of lf0.05 

a Plane (a., 0.506a' + 1.517~' )  makes an angle of 2 8 . 3 1 O  with [OOl], which is to be 
"pared with the angle of 28.2(8). found by Bmwn U d (1991). 

In p a n e  (b., 0.506a. + 1.517c.)  

nearest-neighbours ("N) bonds Cu(Z)-O-Cu(3) (see figure 1 and table l), hence 
defining the general direction in which the helical structure will tend to propagate. 

The natural pitch angle of this incommensurate structure is given by Bij = 2rk. 
r i j ,  where ri j  is the vector connecting two copper nearest neighbours (NN) i and j .  

couples [(2);(1)1, [(2);(4)1, [(3);(1)1 and [(3);(4)1, we have 

= e ,  = 86.940 ea, = e,, = 91 .oso. 

It is intuitively understandable that, when the NN coupling of the helimagnetic struc- 
ture is strong, the pitch angle will approach Oo or 180° depending on whether this 
coupling is ferromagnetic or antiferromagnetic Conversely, if this same coupling 
loosens, the pitch angle is expected to approach 90'. Therefore, the above values for 
B i j  suggest that the NN exchange couplings are much weaker than the NNN coupling. 

It is also clear from the low-temperature collinear arrangement of phase I that 
b is the easy axis; it corresponds to a magnetic anisotropy responsible for the gap 
of nearly 0.2 THZ (nearly 9 K) in the dispersion curves of magnons, as measured 
by Aib et ul (1989) at T = 30 IC Let us emphasize that direction b is a resulting 
compromise between the two sets of local anisotropy directions, each attached to one 
set of ribbons. The dipolar anisotropy is very small and will not be considered. This 
is all the more justified here, as copper has a very small magnetic moment and as all 
temperatures under consideration are high. 

At the incommensurat?tecommensurate transition, the crystalline anisotropy con- 
veniently aligns all the magnetic moments. The directions of the magnetic moments 
on N" couples Cu(2) and Cu(3) are slightly reoriented from 178' to 180°, unlike 
the moments on NN couples that are subjected to a drastic reorientation from a 
024 (or 02,) of 91.06' (or 86.94'), to OD, showing unambiguously that the NN super- 
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exchange couplings are weak in CuO. These views were expressed at the 'Rkunion 
IRF-Supraconducteurs a Hautes T,' held in Grenoble on 15-16 June 1989. 

2 Experiment 

A polarized neutron experiment was performed on the G6.1 spectrometer at the 
Orphee reactor of the Laboratoire U o n  Brillouin at Saclay to verify some aspects of 
the magnetic structure of CuO. The wavelength X = 4.7174 8. was obtained from 
a vertically bent graphite monochromator and the incident beam was filtered for the 
X/2  by a block of cooled beryllium. The polarizer and analyser were two CO-Ti 
benders of Institut LaueLangevin type. Polarized neutrons were guided by a vertical 
magnetic field of U) Oe from the polarizer to the analyser, and through the sample 
as well. When needed, the spins of the diffracted neutrons were reversed by a flipper 
coil at the entry of the analyser, with a flip ratio of 70 to 1. It is recalled that 
the neutron only 'sees' the component S, of the magnetic moment projected on a 
plane perpendicular to the diffraction vector q. This component, in turn, has to be 
decomposed into two parts: one parallel to the spin of the neutron and the other 
perpendicular to it, these latter two components being responsible, respectively, for 
the non-spin-flip and spin-Rip diffraction of the neutron. 

The CuO single crystal of 12 mm x 3 mm x 4 mm dimensions was grown 
by Wanklyn and Garrard (1983) at the Clarendon Laboratoly by flux growth in a 
platinum crucible. The starting materials for the flux were MOO,, V,O, and &CO,. 
Its largest dimension was approximately along a' + c.. 

The crystal was oriented with its U' and c' axes in the diffraction (horizon- 
tal) plane and hence with b' parallel to the vertical polarization of the neutrons. 
Therefore, only (h,0,1) B r a g  peaks were accessible. In the following we shall be 
concerned with (4.0,;) and ($,O, !) reflections, which form an angle of 104.8O in 
reciprocal space. In the incommensurate region these two peaks shift a little and can 
be indexed as (0.506, 0, -0.483) and (0.506, 0, 1.517). 

The experiment consisted in stabilizing the temperature at selected values in both 
commensurate and incommensurate regions, pointing successively to the two selected 
Bragg peaks, and performing rotations of the detector (or 0 scan) once with the Ripper 
on and a second time with the flipper off. Table 2 summarizes our observations and 
those of Brown a al (1991), and figure 2 demonstrates this. The peaks in figures 2(a) 
and 2(6) were obtained in the commensurate phase at 14.87 R they show that along 
two nearly perpendicular directions there is no spin-flip signal, and hence that in 
phase I all the moments were aligned along b (or b"). The peaks in figures 2(c) 
and 2(d) were obtained in the incommensurate phase I1 at 221 K Figure 2(c) shows 
that the spin-flip and non-spin-flip intensities are similar, indicating that the two 
components of S, already defined, that are seen in the 0.506a' - 0.483~' direction, 
are nearly equal. Rgure 2(d) reveals finally that, in phase 11, the peak (0.506, 0, 
1.517) is entirely non-spin-flip, proving firstly that the only moment that the neutron 
'sees' is parallel to its polarization, confirming that there is indeed a component of 
the magnetic moment along b (or b*)  as expected, and secondly that the helix is, 
to a good approximation, in plane (b*; 0.506a' + 1.517c'), for the reason that the 
'invisible' component of the magnetic moment has to be along the diffraction vector 
q. 

Least-squares refinement of the data shows that the plane of the helix is parallel 
to b' (or b), and that it makes an angle of 106.9 f lo with the propagation vector 
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Flgure I 'The CuO paks at X = 4.717 k jl: the Spin-flip and 0: the non-spin-flip 
intensities. 

k = 0.506u* - 0.483~. and 28.19 f 1' with [Ool] in p obtuse. It is very dose to 
plane (b*; 0.506a'+ 1.517~') that makes an angle of 106.78O with the propagation 
vector and 28.31 -+ 1' with [Ool] in p obtuse. These values are in agreement with 
the result of Brown et a1 (1991) who have measured an angle of 28.2(8)" between 
the plane of the helix and [Ool] io /3 obtuse, which gives an angle of 106.89(8)0 with 
the propagation vector. It bas also been deduced from the data that the envelope of 
the helix is circular within an error of 5%, this result being in agreement with the 
work of Brown er ai (1991). In section 3.1 we shall show that the Occurrence of the 
propagation vector in plane (U*, c') imposes a circular envelope. 

Although the crystal was not twinned and revealed a very fine mosaic during 
triple-axis measurements we should note that the peaks in figure 2 have an irregular 
shape. 'This feature will not be discussed here; we simply wish to mention that it 
has also been observed for nuclear peaks at room temperature in the high-resolution 
x-ray measuremens by Langford and Lou& (1991) and is attributed to a distribution 
in the dimensions of the unit cell and hence to the Cu-0 bond lengths. This feature 
could very well be reflected by a distribution of the superexchange couplings between 
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mpper ions producing the irregular shape of the peaks in phase 11. 
"b compare our measurements with those of Forsyth et d (1988), we calculated, 

at T = 15 K, the integrated intensity of each of the two peaks ($,O, i )  and ($,O, g ) ;  
the ratio of the mrresponding structure factors was found to be 

Fl/F2 = (Ilsin61)/(12sin62) = 1.4 

where the indices 1 I ($,,O,j) and 2 f ($,O,$), with 6'; being the corresponding 
B r a g  angle. This result 1s wthin 5% of the corresponding ratio obtained from the 
data in table 2 of Forsyth el a1 (1988). 

3. Analysis 

Classical theories have been of gear help to gain insight into a magnetic structure 
where an intuitive guess of the arrangements of the magnetic moments is impossible. 
In section 3.1, the analysis is inspired by the work of Bertaut (1974), Villain (1959) 
and Yoshimori (1959) (see also Rossat-Mignot (1987) for a review and RegnaUlt and 
Rossat-Mignot (1990)). Section 3.2 is an application to CuO, of the symmetry analysis 
of magnetic structures by Bertaut (1968, 1971, 1981). 

3.1. Minimizing the Hamilfonian 

Every copper ion is coordinated to four oxygen ions, each in turn being coordinated 
to three other copper ions. However, the total number of neighbours to a particular 
copper ion is not 12, as expected, but only ten, for the simple reason that successive 
mpper ions on a chain are connected by two different oxygen ions, as is clearly visible 
in figure 1 (for example: Cu(2) and Cu(5)). The neighbourhood pointers labelled 6, 
to 6, are defined in table 3; they are vectors connecting one particular mpper ion 
with the neighbours with which it has a superexchange coupling via an oxygen ion. 
The fust four are common to sites Cu, and Cu,,, while 6, and 6, are specific and 
distinctive for sites Cu, and Cu,,, respectively. 

Tsbk 3 Row 1 label of neighbourhood pointen; mw 2 their definition; mw 3 the 
sita mnneeled; row 4: the "spending exchange mupling. 

 ROW^ 61 62 63 64 6s 6s 
ROWZ ( a + c ) / 2  ( e + b ) / 2  ( c - b ) / 2  ( a - c ) / 2  ( b + a ) / 2  ( b - a ) / Z  
ROW 3 C u i 4 1 1  C u r C u ~ r  C u i 4 1 1  CurCu11 Qr-W Curr-Curr 
R o w 4  J, J1 Ji J3 J2 Ji 

We shall proceed with the minimization of the Hamiltonian to the point necessary 
to the needs of understanding the static magnetic structure, postponing a more com- 
plete development to a forthcoming paper on spin waves in CuO. As a preliminary, 
we have to select the interactions that will be included in the Hamiltonian. The 
anisotropy term will be absent in the expression for the Hamiltonian, because the 
experimental results do not display its signature. Anisotropy produce a distortion of 
the regular arrangement of the helix, and one would expect to observe high-order 
satellites among the magnetic diffraction peaks (Coqblin 1977, Jensen and Mackin- 
tosh 1991), which has not been the case to date. Hence the remainder of this section 



Magnetic structure of CuO by neutron diffraction 5333 

applies to the incommensurate phase where an anisotropy term is irrelevant. It is 
merely responsible for the orientation of the plane of the helix. 

Summing separately over all sites Cu, and a,,, the Hamiltonian reads 

H = 4 ~ J ( ~ , ) S ( T ; ) .  S(r ;  + 6,) + $ J(a,)s(r j ) .  S ( r j  + 6,) 
iECW , <€Cull Y 

(1) 

where 6, and 6,'belong to the set { f 6 ,  . . . f a,]. 
When a magnetic structure generates two firstader satellites hk around each 

nuclear peak, it implies that the Fourier transform of the spin operator on site r 
reduces to 

S ( r i )  = SI(k)exp(i2?rk.ri)+ Sl(-k)exp(-i2?rk. r i )  for sites Cu, (2a) 

S(rj) = SII(k) exp(i2rk.  r j )  f SII(-k) exp(-i%k. r j )  for sites Cull (3) 

with Sl(k) = S,(-k)' and Sl,(k) = SIl(-k)*. In order to check that the amplitudes 
of moments on equivalent sites are equal, we have to write that 

IS(ri)12 = SI(k)'exp(i4nk . r i )  + SI(k)2exp(-i4nk. r ; )  + 2SI(k) .  SI(-k)  

S; for Cu, ( 3 4  

= s;~ for a,, (3) 

ls(rj)12.= SIl(k)2exp(i4?rk. r j )  + ~ ~ , ( k ) ~ e x p ( - i 4 n k .  vj) + 2sI,(k).  SII(-k) 

where spins on inequivalent sites are not supposed equal, i.e. SI is not necessarily 
equal to Sll. We can easily see that, if k is incommensurate, equations (3) can be 
satisfied only if the factors of the exponentials are zero. This is verified if Sl(k)  and 
SII(k) are two vectors proportional to (U-iv), U and v being bvo unitary orthogonal 
vectors. One then has S , ( k ) 2  = 0 and S, , (k)2  = 0, hence cancelling the terms with 
exponentials. 

Replacing equations (2) in the Hamiltonian (1) gives 

where N is the number of copper ions on each site and 

C1 = J4cos(2nk-61)+ J l [ c o s ( 2 n k ~ 6 2 ) + c o s ( 2 n l c ~ 6 3 ) ] +  J 3 c o s ( 2 n k . 6 4 )  (Sa) 

Cz = J2 cos(2nk. 6,)  

c3 = 52 cos(2nk.  6 6 ) .  

(56) 

( 5 4  

The "imtion of the Hamiltonian (4) relatively to S,(k) and S,,(k) is subjected 
to the constraint relations (3). Without loss of generality we can begin with a weaker 
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condition, ensuring solely that the sum of all the squared amplitudes of the magnetic 
moments on both sites be ked. This is obtained by adding equations (3a) and (3): 

S,(k). S I ( - k )  + S,,(k). S, , ( -k)  = N ( S :  t Sz,) = constant. (6) 
i€Cul  j€Culr 

Now applying the Lagrange multiplier technique to minimize equation (4) submitted 
to the constraint (6) leads to the equations 

where X is the Lagrange multiplier. Equations (7) admit non-trivial solutions only if 

= $ {(C, + C3) [(Cz - C3)’ +4C~l”2} 

in which case the amplitudes of the magnetic moments on sites Cu, and Cu,, are 
related by 

Si,(k) = I ( X  - CZ)/CllSi(~~ = I C l / ( X  - C3)1SI(k) = rS,(kE) 

Thus we reach an important result for CuO, namely, if r = 1, that is to say if we have 
equal moments on sites Cu, and Cu,,, then we must have Cz = C3 or equivalently 
from (5b) and (5c) 

cos (2nk .  9) = cos(2ak: 66). (8) 

Conversely examination of condition (8) shows that, if the propagation vector k 
is confined to plane (b, a x b) or to plane (a, e) where it actually lies, then we can 
conclude that the amplitude of the magnetic moments on sites Cu, and Cu,, are 
equal. As a corollary this imposes a circular envelope to the helical structure. The 
OCCurrence of k in either plane depending on the particular values of the ( J1 . . . .I4). 

3.2 JLmmetty argumenfs 

With the howledge of the propagation vector IC = (ks,ky,kz) for the magnetic 
structure and the direction of the magnetic moments in CuO, we can derive the 
different magnetic configurations compatible with the magnetic space group G, of 
CuO this is readily obtained from a symmetry analysis of the magnetic representations 
(Bertaut 1968, 1971, 1981). 

The underlying point group of CZ/c is Czh(Z/m) = {1,2y, i ,m}.  The propa- 
gation vector k of the magnetic phase of CuO is invariant under the glide plane 
c = {mylO,O,$), but not under the twofold axis Z,, hence reducing the point 
group to Clh(m) = {l ,m) ,  and the magnetic space group G, to C c  (No 9). We 
can choose as generators of space group C c  the three primitive translations, plus 
C = { l l $ , & , O } ,  a non-primitive translation, and c. Therefore we have the coset 
expansion 

G‘, = IT t CT + cT t (Cc)T 
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where T is the invariant subgroup of the primitive translations. In the following we 
shall choose the reference copper ions at: 

m preference to those in table 1. The transformation matrices for the y component 
of the Fourier transform of the magnetic moment are deduced from the following 
relations: 

C S I V  k -sk - sy CS2, k - s k  - 4y  (0.1,O) (k) 

cS& =b2S:, (0 ,0,1)  .Sty = b2Sty ( O , l , l )  (9d) 

where in parentheses we have written the primitive translation involved in the vans- 
formation, and where a2 = exp(i2nkZ) and b2 = exp(i2nk,). When dealing with 
a component parallel to the glide plane (called the in-plane component), one will 
simply have to reverse the signs of all the right-hand sides in equations (9) and (9d). 

In matrix form equations (9) read 

0 1 0  0 0 1 0  
0 0 1  0 0 0 1  

0 a 2 0 0  0 b 2 0 0  

These generators satisfy the defining relations that follow: 

0 0 0 1  
0 a2 0 
bz 

a252 0 0 0 

C2 = a21 c2 = b21 c C =  C C =  [ 
where 1 is the identity operator. These matrices mnstitute a representation r of the 
problem in hand. Tible 4 gives the character table of the irreducible representations 
of Gk = Cc,  note that they are one-dimensional. 

lhbk 4 Charader table of the irreducible representations of G h .  

l & C C  
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By application of the projection operator we shall obtain the basis vector of each 
representation ru. 

V," = x d , ( h ) * h V k  

where d,(h) is the unique matrix element associated with operator h in any of 
the representations r1-r4, and V k  is a linear mmbioation of the Sfy. choosing 
V k  = Sf,. one h d s  that 

Kk = Sfy + a* b' Sty - a* Sty - b' Sty 

V," = Sf, + a'b'StY +a ' s& + b'Sky 

V t  = Sfy - a*b*Sty - a'Sz", + b'S& 

V t  = Si", - a'b'S:, + a*S&, - b*Siy .  
Only one vector at a time can contribute to each component of the magnetic moment 
(Bertaut 1981). Choosing V: + 0 and lLk = v," = = 0 for example, we obtain 
sk I Y - 4  - sVk 1 Sgy = -1bV; 4 

Let us write v;' = 2S0 exp(iZa'p), where 'pis an adjustable prameter. Then, in the 
representation rL, we can express the magnetic moment on each copper ion inside 
cell i as (see relations (1-4)-(14) of Bertaut (1971)) 

Szy k -  - -aa 1vk Sjy = ;ab@.  

Si, = So cos (2nk .  r; + v )  
Siy = - S O c o s [ 2 a ( k . ~ ; + k = / 2 ) + ( o ]  

S&, = - S O c o s [ 2 a ( k . ~ ; + k z / Z ) + v ]  

Siy = S O c o ~ { 2 a [ E . ~ ; + ( k , + k , ) / 2 J + ~ ) .  
In the commensurate phase I, we have 

Furthermore the parameter 'p has to be set to a/4, in order that all moments on 
sites Cur and Cur, have equal amplitude as desirable from section 3.1 (condition (8)); 
then the arrangement is such as tT11, Cu(1) and Cu(4) being parallel, and Cu(2) 
and Cu(3) antiparallel. We can verify that selecting &k # 0 rather than Kk gives 
the same configuration. I f  V$ (or V t )  # 0 then Cu(1) and Cu(4) are antiparallel, 
and Cu(2) and Cu(3) are parallel, but this configuration is totally unacceptable, with 
respect to the measured intensities of the magnetic B r a g  peaks. 

In the incommensurate phase II, we have, for the y component, the same relations 
(10) pertaining to representation rl, and for the in-plane component with the same 
representation we have 

A, = 1 k , = - h  a = i  b = 4. 

Sfp = S , c o s ( 2 a k . ~ i  +qP) 

Sip = -So cos[2x(k. T ;  + ks/2) + ' p p ]  

Sip = So ~ 0 ~ [ 2 x ( k .  vi + k,/2) + 'pp] 

sip = -socos{2n[k-r i  + (A, + kz)/2] t ' p p }  (11) 
with 'p = 0 in (10) and 'pp = x / 2  in (11) to satisfy condition (8). Here again equa- 
tions (10) and (11) describe the observed helical structure with a circular envelope. 
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A Conclusion 

It is not a common practice to use neutron polarization analysis to study magnetic 
structure, and yet we have proved that it can be a decisive technique. There is 
agreement between us and Brown et al (1991) who have used a more sophisticated 
technique. We both find the same propagation vector k = (0.506,0,-0.483) for 
the helical structure of the incommensurate phase. The plane of the helix is parallel 
to b' (or b) and makes an angle of 106.9 & la with the propagation vector and 
28.19 f lo with [Ool] in p obtuse, to be compared with the value of 28.2(8y found 
by Brown e[ nl (1991). Fmally, we both found a nearly circular envelope for the helix. 

In the theoretical part of the paper we neglect the anisotropy term in the Hamil- 
tonian describing the incommensurate phase of (30. This is justified by the absence 
of high-order satellites. We show then that in the minimization process of the Hamil- 
tonian a constraint appears, which imposes the condition that the envelope of the 
helix should be circular if the propagation vector i., found in plane (b,o x b) or in 
plane (a, c) where it actually lies. 
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Nofe added m .woof. Asbrink and WAskowska (1991) suggest lhat in a new Rfinement of a new x-ray 
experiment on 010, the wrreu space group muld be Cc as it is p ropasd  in this p p e r  for the magnetic 
system. 
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